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Abstract. The open nonlinear Schrödinger model with spin degrees of freedom is considered.
We find two types of integrable open boundary conditions. We study the Bethe ansatz states
of the model at the infinitely strong coupling limit. For some boundary conditions, the spins
of the Bethe ansatz wavefunctions are all aligned up or down. For the other type of boundary
conditions all the spin configurations are degenerate.

1. Introduction

One-dimensional impenetrable gases with spin degrees of freedom (and infiniteU Hubbard
model) have some interesting properties [1–4]. The model with open boundary conditions
has anSU(2)N symmetry (whereN is the number of particles) that is the direct product of
the individualSU(2) transformations for spin of each particle. For the model with periodic
boundary conditions there is a smaller symmetry, namely a subgroup ofSU(2)N , being
the SU(2)N transformation that does not change under cyclic permuations of the particles
[3]. As the model has large symmetries, the ground state is degenerate in both boundary
conditions.

Recently Izerginet al gave the Fredholm determinant representations for the correlation
functions [5] of the impenetrable two-component Bose and Fermi gas system (and infinite
U Hubbard model) with periodic boundary conditions [6–8], while Kojima has studied the
correlation functions of the impenetrable Bose gases with Dirichlet and Neumann boundary
conditions [9]. There has been increasing interest in integrable electron systems with open
boundary conditions or with impurities in the condensed matter physics [11, 12, 15, 16].

For this paper, we studied the two-component Bose and Fermi gases with open boundary
conditions. In the model there exist two types of integrable open boundary conditions, one
corresponding to the existence of a boundary chemical potential while the other type is
similar to a boundary condition with a boundary magnetic field.

We also studied the wavefunctions and spin configurations of the model at infinitely
strong repulsive interactions.

The contents of this paper are as follows. In section 2, two-component one-dimensional
gases with open boundary conditions at finite coupling are considered. Integrable open
boundary conditions for the model are classified. The model atc → ∞ is studied in
section 3.

Details will be published elsewhere [19].
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2. Integrable boundary conditions for the two-component nonlinear Schr̈odinger
model

The Hamiltonian for the two-component gas with open boundary conditions is given by

H =
∫ L

0
{(∂xψ†∂ψ)(x)+ c : (ψ†ψ)2(x) :} + c+0 (ψ

†
+ψ+)(0)+ c−0 (ψ

†
−ψ−)(0)

+c+L (ψ†
+ψ+)(L)+ c−L (ψ

†
−ψ−)(L) (1)

whereψα(x) andψ†
α(x) (α = spin±) satisfy the canonical commutation relations for the

boson or fermion,c is the coupling constant andcα0 (c
α
L) for α = ± are the boundary fields

at the boundaryx = 0 (respectivelyx = L). For the model with finite coupling constant
c, the numbers of particles with spins up and down are conserved separately and then the
eigenstates which contain(N −M) particles of up spins andM particles of down spins can
be written in the form

|9N,M〉 =
∫ L

0
dz1 . . .

∫ L

0
dzN

∑
α1...αN=±

χ
α1...αN
N,M (z1, . . . , zN)ψ

†
α1
(z1) . . . ψ

†
αN
(zN)|0〉 (2)

where|0〉 is the pseudovacuum.
To obtain the Bethe ansatz wavefunctions, it is covenient to consider the system of

the particles on the circle−L 6 zj 6 L (extended space). There are boundary fields
at zj = 0 and zj = L and there are delta function interactions between both particle–
particle and particle–mirror image (about the mirror crossing at 0 andL of the circle) of
the particle. From the symmetry aboutzj → −zj the wavefunctions can be constructed
to be invariant under this transformation. We can obtain the wavefunctions of the model
with open boundary conditions by restricting coordinateszj of the wavefunctions to be
0 6 zj 6 L.

The first quantized Hamiltonian for the model on the extended space is given by

h = −
N∑
j=1

∂2
zj

+ c
∑
i 6=j

[δ(zi − zj )+ δ(zi + zj )] + c+0
N∑
j=1

δ(zj )δαj ,+

+c−0
N∑
j=1

δ(zj )δαj ,− + c+L
N∑
j=1

δ(zj )δαj ,+ + c−L
N∑
j=1

δ(zj )δαj ,−. (3)

Bethe ansatz wavefunctions for the model with open boundary conditions have the following
form:

χα1...αN (z1 . . . zN) = S
∑

a1,...,aN=±
ei
∑N
j=1 aj kj zj

∑
Q∈SN

ξαQ(1),...,αQ(N)

×(aQ(1)kQ(1), . . . , aQ(N)kQ(N)|Q)θ(zQ)
=

∑
P∈SN

∑
Q∈SN

∑
a1,...,aN=±

ε|P |ei
∑
j aP (j)kP (j)zj ξαQ(1),...,αQ(N)

×(aPQ(1)kPQ(1), . . . , aPQ(N)kPQ(N)|PQ)θ(zQ) (4)

whereSN is the symmetric group of orderN , θ(zQ) is 1 in the regionzQ (the region where
zQ(1) < · · · < zQ(N)) and 0 in the other regions, andS is the symmetrizer (antisymmetrizer)
for the system of bosons (resp. fermions).

Sfα1...αN (z1 . . . zN) =
∑
P∈SN

ε|P |fαP(1)...αP (N) (zP (1) . . . zP (N)) (5)
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where ε = +1 for the Bose gas andε = −1 for the Fermi gas. In equation (4)
ξαQ(1),...,αQ(N) (aQ(1)kQ(1), . . . , aQ(N)kQ(N)|Q) are the spin-dependent amplitudes in the region
zQ and are the components of 2N -dimensional vectorξ(aQ(1)kQ(1), . . . , aQ(N)kQ(N)|Q).
Summation overaj ’s are specific to the open boundary conditions. The wavefunctions
for some coordinateszj which have minus signs can be obtained by replacingzj by −zj
except for those in theθ function.

Let us define theS matrices and boundaryS matrices as follows

SQ(i)Q(i+1)(aQ(i)kQ(i), aQ(i+1)kQ(i+1))ξαQ(1),...,αQ(N) (. . . , aQ(i)kQ(i), aQ(i+1)kQ(i+1), . . . |Q)
= ξαQ(1),...,αQ(i+1),αQ(i),...,αQ(N) (. . . , aQ(i+1)kQ(i+1), aQ(i)kQ(i), . . . |(i, i + 1)Q) (6)

K0
Q(1)(aQ(1)kQ(1))ξαQ(1),...,αQ(N) (aQ(1)kQ(1), . . . , aQ(N)kQ(N)|Q)

= ξαQ(1),...,αQ(N) (−aQ(1)kQ(1), . . . , aQ(N)kQ(N)|Q) (7)

KL
Q(N)(aQ(N)kQ(N))ξαQ(1),...,αQ(N) (aQ(1)kQ(1), . . . , aQ(N)kQ(N)|Q)

= ξαQ(1),...,αQ(N) (aQ(1)kQ(1), . . . ,−aQ(N)kQ(N)|Q) (8)

where subscripts denote the spin spaces of which the (boundary)S matrices act.
In other wordsS matrices determine the relation between the amplitudes of adjacent

regions and boundaryS matrices determine the relation between the amplitude of rapidity
kQ(1) (kQ(N))and that of rapidity−kQ(1) (−kQ(N)) for the regionzQ i.e. the relation between
the amplitude ofzQ(1) > 0 (zQ(N) < L) and that ofzQ(1) < 0 (resp. zQ(N) > L).
The fundamentals of the Bethe ansatz are the condition that for the integrable models,S

matrices and boundaryS matrices satisfy the Yang–Baxter equation and reflection equations,
respectively.

The amplitude in the regionzQ can be obtained by successively applying theS matrices
and boundaryS matrices to thereference amplitudeξα1,...,αN (k1, . . . , kN |I ) whereI denotes
the regionz1 < · · · < zN . Moreover there are many paths from the reference amplitude to
the amplitude in the regionzQ. To guarantee consistency for all the paths it is necessary not
only that theS matrices (boundaryS matrices) satisfy the Yang–Baxter equation (reflection
equation) but also that the amplitudes (especially the reference amplitude) must satisfy the
quantization conditions.

The quantization conditions (open boundary conditions) are found by considering the
negation ofaP(j)
ξαQ(1),...,αQ(N) (aP (1)kP (1), . . . , aP (j)kP (j), . . . , aP (N)kP (N)|P)

⇒ ξαQ(1),...,αQ(N) (aP (1)kP (1), . . . ,−aP(j)kP (j), . . . , aP (N)kP (N)|P) (9)

along two different paths. In the one path particlezQ(j) is exchanged with particles
zQ(j−1), . . . , zQ(1) by SQ(j),Q(j−1) . . . SQ(j),Q(1), reflected atzQ(j) = 0 and again exchanged
with particleszQ(1), . . . , zQ(j−1) by SQ(j),Q(1) . . . SQ(j),Q(j−1). In the other path particlezQ(1)
is exchanged with particleszj+1, . . . , zN , is reflected atzQ(j) = L and finally exchanged
with particleszQ(N), . . . , zQ(j+1).

These quantization conditions give the condition that the reference amplitude is the
simultaneous eigenvector (as a 2N -dimensional vector) of the operators

Zj({a}, {k}) = Sj,j−1(aj kj , aj−1kj−1) . . . Sj,1(aj kj , a1k1)

×K0(aj kj )S1,j (a1k1,−ajkj ) . . . Sj−1,j (aj−1kj−1,−ajkj )
×Sj+1,j (aj+1kj+1,−ajkj ) . . . SN,j (aNkN,−ajkj )
×KL(ajkj )Sj,N (aj kj , aNkN) . . . Sj,j+1(aj kj , aj+1kj+1) (10)

for j = 1, . . . , N . By solving the quantization conditions we get the (nested) Bethe ansatz
equations.
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The S matrices and the boundaryS matrices are obtained by observing the boundary
condition for the scatterings of particle–particle and for the crossing of particle to the point
0, L. S matrices are obtained as

Sij (aiki, aj kj ) = aiki − ajkj + icεPij /2

aiki − ajkj − ic/2
. (11)

The boundary condition for the particlezQ(1) to cross the point 0 is given by

∂zQ(1)χ
α1,...αN (z1, . . . , zN)|zQ(1)=εzQ(1)=−ε = c+0 δαQ(1),+χ

α1,...αN (. . . , zQ(1) = 0, . . .)

+c−0 δαQ(1),−χα1,...αN (. . . , zQ(1) = 0, . . .). (12)

From equations (12) and the boundary condition atzj = L we obtain the boundaryS
matrices as

K0
i (aiki) =

( 2iaiki−c+0
2iaiki+c+0

0

0 2iaiki−c−0
2iaiki+c−0

)

KL
i (aiki) = exp 2iaikiL

( 2iaiki−c+L
2iaiki+c+L

0

0 2iaiki−c−L
2iaiki+c−L

)
.

(13)

For the general values of the boundary fields, boundaryS matrices do not satisfy the
reflection equation. Only special values of the boundary fields correspond to integrable
boundary conditions [17]. There exist two types of integrable boundary conditions

I c+γ = c−γ = cγ

II-a c+γ = ∞ andc−γ is arbitrary

II-b c−γ = ∞ andc+γ is arbitrary

(14)

whereγ = 0, L.
Type I boundary conditions correspond to the existence of boundary chemical potential

and there are counterparts in the supersymmetrict–J model [14] and in the Hubbard model
[13].

In type II boundary conditions boundaryS matrices are somewhat similar to those of
the Hubbard model with boundary magnetic fields [13].

Note that in the type II-a (II-b) boundary conditions ifc−γ = 0 (c+γ = 0) boundaryS
matrices are proportional toσ z which are boundaryS matrices for the XXZ model with an
infinite strength boundary magnetic field [17].

3. Strong coupling limit

We shall now consider theimpenetrabletwo-component particles (c → ∞) with integrable
open boundary conditions. At thec → ∞ limit impenetrability yields

ξαQ(1),...,αQ(N) (. . . , aP (j)kP (j), aP (j+1)kP (j+1), . . . |P)
= − εξαQ(1),...,αQ(N) (. . . , aP (j+1)kP (j+1), aP (j)kP (j), . . . |(j, j + 1)P ) (15)

and therefore for allP,Q,R ∈ SN
ξαQ(1),...,αQ(N) (aP (1)kP (1), . . . , aP (N)kP (N)|P)

= (−ε)|R|−|P |ξαQ(1),...,αQ(N) (aR(1)kR(1), . . . , aR(N)kR(N)|R). (16)
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Then the wavefunctions can be written in the form

χα1...αN (z1 . . . zN) =
∑
P∈SN

∑
Q∈SN

∑
a1,...,aN=±

(−1)|P |(−ε)|Q|ei
∑N
j=1 aP(j)kP (j)zj ξαQ(1),...,αQ(N)

×(a1k1, . . . , aNkN |I )θ(zQ)
=

∑
Q∈SN

∑
a1,...,aN=±

det{eaikizj }ξαQ(1),...,αQ(N) (a1k1, . . . , aNkN |I )θ(zQ). (17)

Let us investigate the system with boundary conditions such that both left and right
boundaries are of type II-b withc+ = 0. With these boundary conditions boundaryS
matrices are of the form

ξαQ(1),...,αQ(N) (−aP(1)kP (1), aP (2)kP (2), . . . , aP (N)kP (N)|P)
= αQ(1)ξαQ(1),...,αQ(N) (aP (1)kP (1), aP (2)kP (2), . . . , aP (N)kP (N)|P) (18)

ξαQ(1),...,αQ(N) (aP (1)kP (1), . . . ,−aP(N)kP (N)|P)
= αQ(N)e

2ikP(N)LξαQ(1),...,αQ(N) (aP (1)kP (1), . . . , aP (N)kP (N)|P). (19)

Note thatαj ’s take values+ or −.
The quantization conditions are given as

αQ(1) = exp(2ikP(N)L)αQ(N) (20)

for anyP,Q ∈ SN . The solution to equations (20) forN > 3 is given by

α1 = . . . = αN =
{

+
− or kj = πn/L (21)

wheren is an integer. Then for this type of boundary condition simultaneous eigenvector
of the operatorsZj({a}, {k}) are only trivial two states (highest or lowest states)
ξ+...+(a1k1, . . . , aNkN |I ) i.e. all the particles have+ spins orξ−...−(a1k1, . . . , aNkN |I ) i.e.
all the particles are of spins− for N > 3 (the caseN = 2 is discussed in appendix B). With
these boundary conditions symmetry of the spin configurations is broken by the boundary
fields (the spin configurations of the two-component impenetrable models are discussed in
appendix A) and therefore we cannot obtain the complete states from the Bethe ansatz and
generators of the symmetry group. This situation is similar to the open XXX model (open
Hubbard model) with boundary magnetic fields (resp. boundary fields) which do not have
SU(2) (resp.SU(2)× SU(2)/Z2) symmetry.

Next we shall investigate the system with the boundary conditions such that both
left and right boundaries are of type I withc+γ = c−γ = ∞ or c+γ = c−γ = 0. For the
boundary conditions of type I, boundaryS matrices do not depend on the spins and then the
quantization conditions do not include spin degrees of freedom, i.e.Zj({a}, {k}) are scalars.
It follows that there is not any condition for the reference amplitude i.e. any 2N -dimensional
vectors serve as a reference amplitude to the Bethe ansatz wavefunctions.

The essential observation is that this seemingly peculiar result comes from the very
large symmetrySU(2)N (see appendix A). That is, for the model with type I boundary
conditions, all the spin configurations are degenerate.

For the Dirichlet boundary conditions (c+γ = c−γ = ∞) boundaryS matrices are obtained
as

K0(aj kj ) = −I
KL(ajkj ) = − exp(2iajkj )I

(22)
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whereI is the identity matrix in the spin spaces. Quantization conditions for these boundary
conditions are obtained as

exp(2ikj ) = 1 (23)

for j = 1, . . . , N .
The wavefunctions in the Dirichlet boundary conditions are given as

χα1,...,αN (z1, . . . , zN |{k}) = (2i)N det{sinkizj }
∑
Q∈SN

(−ε)|Q|ξαQ(1),...,αQ(N) (k1, . . . , kN |I )θ(zQ)

(24)

where the solutions of Bethe ansatz equations are expressed as

kj = π

L
n n ∈ Z>0. (25)

For example the ground state configuration is given by

kj = π

L
j. (26)

For the Neumann boundary conditions (c+γ = c−γ = 0) boundaryS matrices are given
by

K0(aj kj ) = I

KL(ajkj ) = exp(2iajkj )I
(27)

and quantization conditions are the same as for those with Dirichlet boundary conditions.
Then wavefunctions for the Neumann boundary conditions are given by

χα1,...,αN (z1, . . . , zN |{k}) = (2i)N det{coskizj }
∑
Q∈SN

(−ε)|Q|ξαQ(1),...,αQ(N) (k1, . . . , kN |I )θ(zQ)

(28)

where

kj = π

L
n n ∈ Z>0. (29)

The ground state configuration of the Neumann boundary conditions is

kj = π

L
(j − 1). (30)

Note that the ground state that we obtained has very high degeneracy (2N states) but
for the model with finitec the ground state is unique. Then among the degenerate states
only one state corresponds to the ground state for the model with finitec.

4. Discussions and conclusions

The integrable boundary conditions for the spin nonlinear Schrödinger model are classified
into two types. One type (type I) is related to the existence of boundary chemical potential,
and the other (type II) is related to the existence of boundary magnetic field.

At the infinitely strong coupling limit, if at least one of the boundaries is of type II-a
(II-b) with c− = 0 (c+ = 0) all the spins are parallel at least for the Bethe ansatz states.
If both boundaries are of type I, there are not any conditions for the spin wavefunctions.
In this case all the spin configurations are degenerate. This degeneracy is removed by
an infinitesimal perturbation of the order 1/c. In particular the ground state which we
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obtained has degeneracy from the spin configurations. But only one of these degenerate
states corresponds to the ground state for the model with finitec.

To apply this model to the condensed matter physics, study of the ground state which is
the c → ∞ limit of the ground state of the model with finite coupling is important. Details
of this point and studies of correlation functions in this ground state are being prepared for
publication [19].
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Appendix A. Symmetry about spin configurations atc → ∞

In this appendix we shall prove that at the infinitly strong coupling the two-component
model with type I boundary conditions has a symmetry under the spin flippings of the
individual spins of the particles independently.

For convenience, we shall consider the model on the lattice. For the model on the
lattice (Hubbard-like model), the Hamiltonian of the impenetrable particles with spins can
be written using the projection operator as

H = P

[
−

L∑
j=1

∑
α=±

(ψ
†
n+1,αψn,α + ψ†

n,αψn+1,α)+ c+0 ψ
†
0,+ψ0,+ + c−0 ψ

†
0,−ψ0,−

+c+Lψ†
L,+ψL,+ + c−Lψ

†
L,−ψL,−

]
P (31)

whereP is the projector onto the states where double occupations are forbidden.
Let us introduce the spin operators for thej th particleSj,γ such thatSj,γ = σ

γ
n if j th

particle lies on thenth site whereγ = x, y, z, j = 1, . . . , N , n = 1, . . . , L andσγn act as
Pauli matrices for the spin of thenth particle. It is known that kinetic terms commute with
Sj,γ [3], [

Sj,γ , P
∑
α

(ψ
†
n+1,αψn,α + ψ†

n,αψn+1,α)P

]
= 0. (32)

Also Sj,γ ’s commute with boundary chemical potential but they do not commute with
boundary magnetic field:

[Sj,γ , P (ψ
†
a,+ψa,+ + ψ

†
a,−ψa,−)P ] = 0

[Sj,γ , Pψ
†
a,αψa,αP ] 6= 0

(33)

whereα = ± anda = 0, L. Thus for type I boundary conditions, the model has symmety
that flips the spins of the individual particles independently. And all the spin configurations
are degenerate. This degeneracy agrees with intuition. This symmetry is a much larger
symmetry compared with the spinSU(2) symmetry for the model with finite strength
coupling.

The boundary conditions of type II break the above symmetry.
Note that for the model with periodic boundary conditions, the Hamiltonian commutes

with a subgroup ofSU(2)N . That is the spin configurations are degenerate modulo-cyclic
permutations.
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Appendix B. Boundary conditions of type II

Here we consider the systems with boundary conditions of type II-b atc+ = 0 for both
boundaries withN = 2 explicitly. The wavefunctions for the system with two particles are
given by

χα1α2(z1, z2) = {(eik1z1 + α1e−ik1z1)(eik2z2 + α2e2ik2L−ik2z2)

−(eik1z2 + α1e−ik1z2)(eik2z1 + α2e2ik2L−ik2z1)}ξα1α2(k1, k2)θ(z1 < z2)

−ε{(eik1z1 + α2e−ik1z1)(eik2z2 + α1e2ik2L−ik2z2)

−(eik1z2 + α2e−ik1z2)(eik2z1 + α1e2ik2L−ik2z1)}ξα2α1(k1, k2)θ(z2 < z1). (34)

Then for the system withα1 = −, α2 = +
χ−+(z1, z2) = −4{sin(k1z1) sin(k2z2)− sin(k1z2) sin(k2z1)}ξ−+(k1, k2)θ(z1 < z2)}

−4ε{cos(k1z1) cos(k2z2)− cos(k1z2) cos(k2z1)}ξ+−(k1, k2)θ(z2 < z1). (35)

If the rapiditieskj ’s are given as e2ikjL = −1 for j = 1, 2, then the above wavefunctions
satisfy the boundary conditions.

But for the three-particle case we we cannot consistently construct the wavefunctions
of these forms and satisfy the boundary conditions. These observations confirm the fact
that for the boundary conditions of type II at both ends (or at one end) and forN > 3, we
cannot obtain the nonzero wavefunction when+ spins and− spins are mixed (at least as
the Bethe ansatz states).

References

[1] Ogata M and Shiba H 1990Phys. Rev.B 41 2326
[2] Aizenman M and Lieb E H 1990Phys. Rev. Lett.65 1470
[3] Mielke A 1991 J. Stat. Phys.62 509
[4] Frahm H and Korepin V E 1991Phys. Rev.B 43 5653
[5] Korepin V E, Bogoliubov N M and Izergin A G 1993Quantum Inverse Scattering Method and Correlation

Functions(Cambridge: Cambridge University Press)
[6] Izergin A G and Pronko A G 1997Phys. Lett.A 236 445
[7] Izergin A G and Pronko A G 1998 Temperature correlators in the two-component one-dimensional gas

Preprint solv-int/9801004
[8] Izergin A G, Pronko A G and Abarenkova N I 1998 Temperature correlators in the one-dimensional Hubbard

model in the strong coupling limitPreprint hep-th/9801167
[9] Kojima T 1997 Dynamical correlation functions for an impenetrable Bose gas with open boundary conditions

Preprint
[10] Kojima T 1997J. Stat. Phys.88 713
[11] Tsuchiya O and Yamamoto T 1997J. Phys. Soc. Japan66 1950
[12] Bed̈urftig G and Frahm H 1997J. Phys. A: Math. Gen.30 4139
[13] Shiroishi M and Wadati M 1997J. Phys. Soc. Japan66 2288
[14] Essler F H L 1996J. Phys. A: Math. Gen.29 6183
[15] Bed̈urftig G, Essler F H L andFrahm H 1996Phys. Rev. Lett.77 50 978

Bed̈urftig G, Essler F H L andFrahm H 1997Phys. Rev. Lett.78 1397 (erratum)
[16] Frahm H and Matveenko S I 1998 Correlation functions in the Calogero–Sutherland model with open

boundariesPreprint cond-mat/9802289
[17] Sklyanin E K 1988J. Phys. A: Math. Gen.21 2375
[18] Woynarovich F 1971Phys. Lett.108A 401
[19] Tsuchiya O in preparation


